Каков принцип работы паровой турбины?

Паровые турбины

Паровые турбины — принцип работы

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество.

Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт.

В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.

Теплофикационные паровые турбины

Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин — тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением.

У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.

В турбинах с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.

У турбин с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Схема работы теплофикационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины (3). При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом (4) электрического генератора (5). В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы, и из них пар направляется в подогреватели (6) сетевой воды (7). Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть тепла, полученного в котле используется для подогрева сетевой воды.

Паровые турбины специального назначения

Паровые турбины специального назначения обычно работают на технологическом тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).

  • Турбины мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющих давление немного выше атмосферного.
  • Турбины двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней.
  • Предвключённые турбины представляют собой агрегаты с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих турбин направляют в другие с более низким начальным давлением пара. Необходимость в предвключённых турбинах возникает при модернизации электростанций, связанной с установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции турбоагрегаты.
  • Также к турбинам специального назначения относятся и приводные турбины различных агрегатов, требующих высокой мощности привода. Например, питательные насосы мощных энергоблоков электростанций, нагнетатели и компрессоры газокомпрессорных станций и т. д.

Обычно стационарные паровые турбины имеют нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды. Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.

Паровая турбина — принцип действия, описание работы и устройство

Общие сведения

Кратко устройство и строение паровой турбины выглядит следующим образом. На вал крепится диск, куда закрепляются лопатки. Возле этих элементов также находятся трубы сопла, через которые подается пар. Во время его подачи он создает некоторое давление на лопатки, что приводит к его вращению.

Сегодня в этом оборудовании обычно применяется несколько дисков, находящихся на общем валу. При использовании этой конструкции энергия пара, которая проходит через все диски, частично передается этим элементам.

Достоинства турбинных установок:

  • коэффициент полезного действия равен одной заданной величине;
  • могут работать на различных видах топлива: твердое, жидкое, газовое;
  • большой ресурс;
  • огромный диапазон мощностей;
  • широкий выбор теплоносителя.

В основном эти агрегаты используются на тепловых и атомных электростанциях, также они нашли применение на морских судах.

Конструкция сопла

Через сопло проходит пар. В первых конструкциях, когда еще не были полностью изучены свойства расширения пара, сконструировать рационально работающую конструкцию с высоким КПД было невозможно.

Основная причина — сопло, которое применялось изначально, по всей длине было одинаковое по диаметру. Это повлекло то, что носитель, переходя в парообразное состояние, проходил через трубу и попадал в пространство с низким давлением. Его не хватало для нормальной работы турбины.

При этом во время выхода из этого сопла пар клубился из-за атмосферных расширений. Эти недостатки получилось исправить, когда изменили устройство трубы. Теперь пар в начале своего прохождения попадал в зауженную часть сопла, а на окончании оно постепенно увеличивалось в диаметре. Это позволило избавиться от клубов пара, поскольку они значительно понижали скорость.

Особенности работы

В этом случае необходимо отметить, что в турбине может использоваться несколько принципов работы. Они отличаются друг от друга и зависят от конструкции оборудования:

  1. Реактивный принцип. К этому оборудованию относится то, где расширение пара начинается до его поступления на лопатки и во время прохода по ним.
  2. Активный принцип. Здесь сообщение пара с дисками начинается в неподвижных соплах перед поступлением на лопатки.

Если тепло в соплах снижается приблизительно наполовину, то турбинную установку по своему определению тоже называют реактивной.

Активный принцип

Принцип работы паровой турбины основан на том, что любое тело имеет большую энергию, если передвигается с высокой скоростью. Но необходимо учесть одно: энергия быстро падает при снижении скорости. Так, есть несколько вариантов развития событий:

  1. Удар пара о статичную платформу. В этом случае энергия, которую имеет тело, частично перейдет в тепловую, а оставшаяся расходуется на то, чтобы отвести частички жидкости назад. Безусловно, какой-то полезной работы не происходит.
  2. Удар об движущуюся поверхность. В этом случае определенная часть энергии затрачивается на то, чтобы сместить платформу, а оставшаяся так же потратится впустую.

Во время использования активного принципа в турбине применяется только последний вариант. Но надо понимать, что в процессе работы оборудования нужно минимизировать потери энергии на бесполезную работу. Второе условие состоит в том, что необходимо направить поток пара так, чтобы он не деформировал диски во время удара. Добиться этого можно только с учетом специально созданной формы лопасти.

Идеальной поверхностью является та, которая обеспечивает плавный поворот, после этого пар направится в обратную сторону. Говоря по-другому, требуется, чтобы лопатки были сделаны в виде полукруга. Так, ударяясь о поверхность, основная часть энергии передастся диску и заставит его вращаться. Потери же будут минимальными.

Механическое оборудование

В конструкции устройства находится три цилиндра, они собой представляют статор, который имеет вращающийся ротор и металлический корпус. Отдельно находящиеся роторы соединены муфтами. Цепочку, собирающуюся из котла, генератора и роторов, называют валопроводом. Его максимальный размер может быть не более 80 м.

Валопровод производит вращение во вкладышах в опорных подшипниках. Вся работа происходит в масляной среде, металлических элементов вкладышей вал не касается. Сегодня роторы устанавливаются на двух подшипниках.

В определенных ситуациях между роторами, которые принадлежат к ЦСД и ЦВД, находится только один подшипник. Пар, расширяющийся в турбине, заставляет роторы вращаться. Вся мощность, вырабатывающаяся отдельным элементом, суммируется на полумуфте в общий показатель и здесь же доходит до своего максимума.

Помимо того, все части находятся под действием осевого усилия. Оно суммируется, а общий показатель переходит с гребня на упорные элементы, которые установлены в корпусе подшипника.

Описание ротора

Ротор находится в корпусе цилиндра. Сегодня показатели давления могут доходить до 350 МПа, поэтому корпус и все части этой конструкции делаются двустенным. Это помогает снизить разницу давления на каждую стенку, что дает возможность уменьшать их толщину. Помимо этого, это позволяет облегчить затяжку фланцев и делает возможным быстрое изменение мощности турбины.

Непременным условием является установка горизонтального разъема, он обеспечивает доступ к уже находящемуся ротору при выполнении ремонтных работ или ревизии.

Если производится непосредственная установка турбины, то все плоскости разъемов, которые находятся на нижних корпусах, ставятся специальным образом. Для облегчения этой процедуры они все соединяются в единую конструкцию.

Если в последующем наступит момент установки валоповоротной системы, то ее устанавливают в уже находящийся горизонтальный разъем, это позволяет обеспечить точную центровку. Она помогает избежать удара ротора о статор при вращении. Этот дефект часто приводит к серьезной аварии.

Читайте также  Принцип работы карбюратора двухтактного двигателя

Поскольку пар, который находится в турбине, имеет довольно высокую температуру, а ротор вращается в масляной среде, то масло должно нагреваться не больше чем на 100 °C. Это показатель требуется соблюдать с учетом требований пожарной безопасности, при этом он соответствует смазочным свойства материала. Чтобы добиться этой температуры, вкладыши подшипников устанавливаются за корпусом цилиндра.

Использование на атомных станциях

Конструкцию турбины на атомных станциях можно рассмотреть на примере установок насыщенного пара, они находятся только на объектах, на которых применяется водяной теплоноситель. В этом случае нужно отметить, что изначальные показатели турбин на АЭС отличаются низкими параметрами. Это вынуждает использовать больше рабочего вещества, чтобы достигнуть требуемого результата. Помимо того, из-за этого появляется высокая влажность, быстро нарастающая по ступеням турбины. Это приводит к тому, что на атомных станциях применяются внешние влагоулавливающие и внутритурбинные конструкции.

Из-за повышенной влажности пара понижается КПД, а также очень быстро развивается коррозийный износ проточных элементов. Чтобы не допустить этой проблемы, приходится применять разные способы укрепления поверхности. К этим методам относится электроискровая шлифовка, закаливание, хромирование. Если на остальных объектах можно установить простейшую конструкцию турбин, то на атомной станции необходимо подумать не только о защите от коррозийных процессов, но и о выводе влаги.

Самым эффективным вариантом вывода излишней влаги из турбины является отбор пара, он передается на регенеративные подогреватели. Здесь нужно сказать, что если эти отборы находятся после каждой ступени расширения, то нет необходимости дополнительно разрабатывать внутритурбинные влагоулавливатели. Также необходимо отметить, что допустимая норма влажности пара рассчитывается с учетом размера лопатки и ее скорости вращения.

Турбина с конденсатом

Турбинная конструкция, находящаяся в котле, имеет три среды — жидкость, пар и конденсат. Они находятся в едином замкнутом контуре. В этом случае нужно сказать, что в этой среде при преобразовании теряется минимум воды и пара. В этой конструкции жидкость подвержена действию разных химических реагентов, их главное назначение — удалять из воды различные примеси.

Принцип работы в этом оборудовании состоит в следующем:

  1. Отработанный пар, который уже имеет низкую температуру и давление, переходит по трубам в конденсатор.
  2. Во время прохождения этого участка на пути находится множество дополнительных трубочек, по ним насосом постоянно подкачивается холодная вода. Как правило, она забирается из прудов, озер или речек.
  3. Во время соприкосновения с охлажденной поверхностью отработанный пар образует конденсат.
  4. Весь собранный конденсат постоянно передается в конденсатор, а из него он дальше откачивается помпой. Затем жидкость перемещается в деаэратор.
  5. Из него вода заново транспортируется в котел, в котором переходит в парообразное состояние, и процесс повторяется.

Помимо основных элементов в конструкции находится дополнительно несколько устройств: подогреватель и турбонаддув.

Нужно отметить, что турбина вращается лишь в одном направлении и ее скорость может меняться в широких диапазонах. Другое преимущество турбин — это отсутствие толчков, которые происходят в ДВС во время передвижения поршней. Коэффициент полезного действия современных турбин достигает 45−55%, а мощность — 1700 МВт.

Паровые турбины

ПАРОВАЯ ТУРБИНА – это паровой двигатель, в котором лопатки ротора вращаются под действием струи пара и вырабатывают электрическую энергию. Компания «АГТ» предлагает паровые турбины с разными тепловыми циклами и составом, для применения во всех сферах промышленности: металлургическая, нефтеперерабатывающая, химическая промышленность, коммунальное хозяйство, на электростанциях, работающих на биомассе, на утилизационных станциях.

Содержание

Принцип работы паровых турбин

Паровые турбины имеют следующий принцип работы: в паровом котле образуется пар и далее проходит через лопатки турбины под высоким давлением. В результате происходит вращение установки, которая производит механическую энергию. Эта энергия поступает в генератор и используется для выработки электричества. Мощность системы будет зависеть от того, какой перепад давления пара образуется на входе и выходе оборудования. Компания «АГТ» подберет паровую турбину исходя из принципа работы вашего предприятия и поставленных задач.

Чтобы паровая турбина была эффективной и работала с минимальными потерями, пар должен подаваться с высокой температурой и давлением. Поэтому к котельному оборудованию предъявляются повышенные требования. Преимущества данной технологии производства электроэнергии заключаются в том, что есть возможность использовать любой спектр топлива, в том числе и твердое. Однако стоит учесть, что твердое топливо и нефтяные фракции способны снизить экологические показатели системы.

Код мощность скорость давление на входе температура на входе давление на выхлопе расход пара
кВт об/мин МПа С МПа Т/Н
М20 132-750 3000 0.5-2.35 225-330 0.15-0.3 3.54-13.86
М21 250-1000 3000 2.0-2.45 260-390 0.2-0.98 4.76-33
М30 300-700 3000 0.7-1.1 270-330 0.15-0.3 5.88-15.26
М32 1000-2500 3000 2.35-4.0 390-450 0.78-0.98 23.36-43.7
М40 250-1250 3000 0.8-1.0 250-330 0.15-0.55 4.6-21.5
М60 1000-2000 3000 2.35-4.0 390-445 0.297-0.785 17.41-31-32
М70 1000-2500 3000 0.6-1.27 260-300 0.2-0.5 23.2-48.8
М51А 750-1500 1500-6500 2.35-3.43 390-435 0.294-0.98 9.6-30
Т4 3000-6000 3000-6000 3.43 435 0.294-1.57 27.27-118.7
Конденсационная паровая турбина
Код Мощность Скорость Давление на входе Температура на входе Давление на выхлопе расход пара
кВт об/мин МПа С МПа Т/Н
М80 1500 5600-3000 1 300 0.0103 8.8
Q02 1500 6500-1500 2.35-0.2 390 0.0103 8.4
Q03 3000 5600-3000 2.35-0.2 390 0.0103 16.1

Преимущества паровых турбин:

Одно из преимуществ паровых турбин, что можно использовать разные виды топлива, для получения пара. Ведь главная задача – это обеспечение его бесперебойной подачи, согласно ТУ. Компания «АГТ» поможет подобрать паровую турбину по вашему техническому заданию. Паровые турбины заслуженно заняли свое место в российской промышленности, их хорошая эффективность определяется следующими преимуществами:

  • широкий выбор теплоносителя;
  • использование различных видов топлива: твердого, газообразного, жидкого;
  • большой диапазон мощностей;
  • высокая мощность;
  • долгий ресурс установки.

Состав паровых турбин

На самом деле основной состав паровых турбин примерно одинаковый на всех моделях. Паровая турбина состоит из корпуса, лопатки ротора и сопла. Пар проводится по трубопроводам к оборудованию из внешнего источника. Проходя через сопла, потенциальная энергия преобразуется в кинетическую энергию струи пара. Через специально спрофилированные лопатки из сопел вырывается пар и начинает вращать ротор. Вытекая с большой скоростью под углом к плоскости лопаток, пар приводит их в движение.

В некоторых конструкциях паровая турбина имеет сопловой аппарат, состоящий из ряда неподвижных лопаток. Они расположены радиально и искривлены в направлении поступающего потока.

Специалисты проектируют паровые турбины таким образом, чтобы они находились на одном валу с потребляющим энергию устройством. От прочности материалов, из которых изготовлены лопатки и диск, зависит скорость вращения рабочего колеса. Многоступенчатые турбины позволяют более эффективно преобразовывать энергию пара..Специалисты «АГТ» проектируют паровые турбины таким образом, чтобы они находились на одном валу с потребляющим энергию устройством. От прочности материалов, из которых изготовлены лопатки и диск, зависит скорость вращения рабочего колеса. Многоступенчатые турбины позволяют более эффективно преобразовывать энергию пара.

Тепловые циклы паровых турби

  • Экологически чистый цикл Ранкина. Пар поступает в установку от внешнего источника. В этой ситуации между ступенями нет дополнительного прогрева и отмечаются потери тепла;
  • Цикл с промежуточным подогревом. Пройдя первые ступени, пар направляется в теплообменник для дополнительного подогрева. Далее он возвращается в оборудование, где и происходит окончательное расширение. При повышении температуры рабочего тела значительно повышается экономичность;
  • Цикл с промежуточным отбором, утилизацией тепла отработанного пара. При выходе из турбины пар имеет значительное количество тепловой энергии, которая рассеивается в конденсаторе. Некоторую часть энергии можно отобрать на промежуточных ступенях, а часть — при конденсации. Эту энергию можно использовать для технологических процессов.

Необходимо обратить внимание и на конструкцию. Так как именно тут происходит расширение рабочего тела, необходим большой диаметр для пропуска увеличенного объемного расхода. Увеличение диаметра паровой турбины определено максимальными допустимыми напряжениями, которые обусловлены центробежными нагрузками.

Применение паровых турбин

Паровые турбины с небольшой мощностью успешно применяются во всех сферах промышленности. Успешно используются на предприятиях с когенерационным циклом в составе электростанций, для получения не только электрической, но и тепловой энергии, а так же на утилизационных станциях, использующих тепловую энергию технологических процессов. В настоящее время набирает популярность применение паровых турбин на возобновляемых источниках энергии. Компания «АГТ» спроектирует турбину, согласна вашего применения.

Паровые турбины вращаясь с большой скоростью, обеспечивает высокий КПД. На тепловых электростанциях располагают электрогенераторы со скоростью вращения от 1500 до 6500 об/мин. На валу паровой турбины могут быть установлены вентиляторы, насосы, центрифуги, нагнетатели. В качестве понижающего редуктора может быть установлено низкоскоростное оборудование.

Нужна более подробная информация — паровые турбины?

Москва + 7 (499) 704-24-48
Санкт-Петербург + 7 (812) 389-23-48
Ростов на Дону + 7 (863) 303-48-46
Казань + 7 (843) 202-37-55
Красноярск + 7 (3919) 89-80-89
Челябинск + 7 (351) 240-80-89
Краснодар + 7 (8612) 05-69-05
Калининград + 7 (4012) 65-80-99
Самара + 7 (846) 300-23-73
Новосибирск + 7 (383) 207-88-90
Екатеринбург + 7 (343) 226-02-11

Блог об энергетике

энергетика простыми словами

Паротурбинные установки тепловых электростанций (ТЭС)

Паровая турбина вместе с относящимися к ней регенеративными подогревателями, конденсатором, насосами, трубопроводами и арматурой образует паротурбинную установку.

Современная паровая турбина состоит из большого числа деталей, тщательно изготовленных и собранных в единый агрегат. Мощности современных энергетических турбоагрегатов постоянно повышаются, и в настоящее время основной прирост мощностей в энергосистемах происходит за счет ввода агрегатов 300, 500, 800 МВт. На Костромской ГРЭС сооружен головной агрегат мощностью 1200 МВт.

Увеличение мощности турбоагрегатов позволяет сооружать ТЭС большой мощности при одновременном удешевлении их строительства и эксплуатации и снижении расходов топлива на выработанный киловатт-час. Наряду с экономичностью современная турбина должна отвечать высоким требованиям безопасности, надежности и маневренности. Требование высокой маневренности предъявляется ко всему энергетическому оборудованию. Турбина должна допускать быстрый пуск, набор и изменение нагрузки и остановку. Эта задача весьма сложна для агрегатов, работающих при высоких начальных параметрах пара (26 МПа, 540-570 °С) и имеющих стенки корпусов и фланцы большой толщины.

При разработке и эксплуатации турбин приходится сталкиваться с весьма сложными проблемами аэродинамики, теории колебаний, теплопередачи, изменения свойств материалов при высоких температурах и вибрации, автоматического регулирования и контроля турбоустановки.

Рис. 1. Схема простейшей турбины

На рис. 1 показана схема простейшей турбины, а на рис. 2 — схема устройства многоступенчатой паровой турбины. Простейшая турбина состоит из соплового аппарата 1, рабочей лопатки 2, вала 3 и диска 4.

Рис. 2. Схема устройства многоступенчатой паровой турбины

1 — вал турбины; 2 — диски; 3 — рабочие решетки; 4 — нижняя половина корпуса; 5 — верхняя половина (крышка) корпуса; 6 — диафрагмы (нижние половины); 7, 8 – сопловые решетки; 9 – уплотнения диафрагмы; 10 – сопловая решетка первой ступени давления; 11 – переднее уплотнение; 12 – заднее уплотнение; 13 – опорные подшипники; 14 – упорный подшипник; 15 — соединительная муфта; 16 — червячная передача; 17 — масляный насос; 18 — фундаментные плиты; 19 — регулятор скорости; 20 — масляный бак; 21 — регулятор безопасности; 22 — камера отбора; 23 — окна для отбора пара; 24, 27 — опорные фланцы корпуса; 25, 26 — фланцы опорных блоков

Турбина состоит из вращающейся части — ротора и неподвижной части — статора. К ротору относятся вал и закрепленные на нем диски с рабочими лопатками. Статор включает в себя паровпускные органы, сопловые решетки, подшипники и др. Корпус турбины делается разъемным в горизонтальной плоскости по центровой линии вала. Нижняя его часть опирается на фундамент, а верхняя часть устанавливается на нижнюю и крепится по фланцам с помощью шпилек и гаек. Через паровпускные органы в сопловую коробку вводится свежий пар. Корпус заканчивается выхлопным патрубком, через который отработавший пар отводится из турбины.

Читайте также  Принцип работы подкатного гидравлического домкрата

В неподвижных каналах-соплах пар расширяется; при этом его давление и температура снижаются, скорость парового потока возрастает до нескольких сот метров в секунду и соответственно увеличивается его кинетическая энергия.

Она используется в подвижных рабочих лопатках, закрепленных на дисках, насаженных на вал турбины (рис. 2). Между дисками располагаются неподвижные перегородки — диафрагмы с закрепленными в них соплами. Диафрагма и диск с рабочими лопатками образуют ступень турбины.

При большом числе ступеней (20 — 30) турбина состоит из нескольких цилиндров. Частота вращения ротора паровых энергетических турбин обычно составляет 3000 об/мин или 50 с -1 , что соответствует принятой в СНГ частоте переменного тока 50 Гц.

На каждой ступени турбины лишь часть внутренней энергии пара преобразуется в механическую энергию, передаваемую с вала турбины на вал генератора электрического тока. Увеличение числа ступеней приводит к повышению КПД турбинной установки, так как в этом случае каждая ступень «работает» в более оптимальном режиме. Однако увеличение числа ступеней оправдывает себя лишь до определенного предела, так как с ростом числа ступеней турбина усложняется и становится дороже.

Крупные энергоблоки, работающие при высоком и закритическом давлении пара, выполняются с промежуточным перегревом. Пар высоких параметров, совершая работу в турбине, на последних ее ступенях увлажняется, а это приводит к снижению КПД и эрозионному воздействию капелек влаги на лопатки турбины. При использовании же промежуточного перегрева пара не только понижается его конечная влажность, но и повышаются показатели тепловой экономичности цикла. На рис. 3 дана схема одной из наиболее распространенных в нашей энергетике конденсационных турбин К- 300 — 240 мощностью 300 МВт, работающей при начальном давлении пара 240 атм (23,5 МПа). Температура свежего пара принята 540 — 560 °С, частота вращения 3000 об/мин.

Турбина состоит из трех цилиндров: цилиндра высокого давления (ЦВД), цилиндра среднего давления (ЦСД) и цилиндра низкого давления (ЦНД). В двенадцати ступенях ЦВД пар расширяется от указанных выше начальных параметров до давления 4 МПа, после чего направляется в промежуточный пароперегреватель (ПП), установленный в котле, и далее с давлением 3,5 МПа и температурой 540 — 560 °С поступает в ЦСД. В двенадцати головных ступенях ЦСД пар расширяется до давления 0,2 МПа, затем разделяется на два потока: одна треть проходит пять ступеней низкого давления, расположенных в ЦСД, и поступает в конденсатор, а две трети пара по перепускным трубам подаются в ЦНД, где, разделяясь на два потока, проходят по пяти ступеням низкого давления и направляются также в конденсатор. Давление пара за последними ступенями перед входом в конденсатор равно 0,0035 МПа. Разделение пара в части низкого давления на три потока связано с большими объемами пара в последних ступенях. Выпуск всего объема пара через одну решетку приводил бы к недопустимым по соображениям прочности высотам рабочих лопаток. Даже при разделении пара в последних ступенях на три потока высота лопаток составляет 960 мм, а окружная скорость на их вершинах — 540 м/с. При массе последней лопатки 9,8 кг центробежная сила, действующая на нее, равна

Еще более сложны турбины большей мощности. Так, у турбин мощностью 500 МВт делается 4 выхлопа в конденсатор, а у турбины К-800-240 мощностью 800 МВт — шесть выхлопов в конденсатор. В турбине К-1200-240 мощностью 1200 МВт, установленной на Костромской ГРЭС, лопатки последних ступеней имеют длину 1200 мм, но для уменьшения центробежных сил они выполнены из более легкого титанового сплава.

Рис. 3. Изменение параметров рабочего тела в активной турбине:

1, 9 — камеры свежего и отработанного пара; 2,4,6 — сопла; 3,5,8 — рабочие лопатки; 7 — диафрагма.

Рис. 4. Схема турбины К-300-240 (z — число ступеней)

Теплофикационные турбины, устанавливаемые на ТЭЦ, могут иметь 1 или 2 регулируемых отбора (например, промышленный и теплофикационный). В теплофикационной турбине Т — 250 — 240 имеются 2 отбора пара для подогрева воды в системе теплоснабжения (из них один регулируемый) и, кроме того, может быть осуществлен предварительный нагрев сетевой воды в специальном подогревателе, встроенном в конденсатор.

Отработавший пар конденсационных турбин и турбин с промышленными и теплофикационными отборами поступает в конденсатор, где поддерживается давление значительно ниже атмосферного. В конденсаторе осуществляется отвод тепла от рабочего тела — пара — при возможно более низкой температуре и давлении с превращением пара в конденсат, идущий вновь на питание котлов. Здесь тепло отдается охлаждающей (циркуляционной) воде. Конденсат не должен смешиваться с охлаждающей водой, имеющей большое количество примесей. Поэтому конденсатор представляет собой теплообменник поверхностного типа.

На рисунке 5 приведена схема конденсатора паровой турбины.

Теплообмен от пара к охлаждающей воде происходит через стенки трубок небольшого диаметра, чаще всего латунных, внутри которых движется охлаждающая вода. В конденсатор поступает влажный пар; температура насыщения конденсирующегося пара tк тем ниже, чем ниже температура циркуляционной воды. При прямоточном водоснабжении, когда вода в конденсатор забирается из реки или пруда, ее температура колеблется от 2 до 20 °С (среднегодовая расчетная температура 10 — 12 °С). Если же водоснабжение является оборотным с охлаждением воды в градирнях, то температура воды меняется в зависимости от времени года от 10 — 12 °С до 35 -40 °С.

Рис.5. Схема конденсатора паровой турбины:
1 – патрубок для выхода воды, 2 – крышка водяных камер, 3 — водяные камеры, 4 – трубные решетки, 5 – корпус конденсатора, 6 – пароприемная горловина, 7 — трубки, 8 — сборник конденсата, 9 — патрубок для подвода воды, 10 — патрубок для удаления воздуха.

Обычно циркуляционная вода в конденсаторе нагревается на 8 -10 °С. При поддержании давления в конденсаторе pк = 0,0035 МПа температура конденсации составляет tk = 26,4 °С. В летнее время, когда температура охлаждающей воды выше среднегодовой расчетной, давление в конденсаторе может повышаться до 0,01 МПа, что соответственно снижает экономичность работы турбоустановки. На одну тонну конденсируемого пара расходуется 50 — 60 т охлаждающей воды.

Для поддержания хороших условий теплообмена и постоянного парциального давления воздуха, а вместе с ним и общего давления в конденсаторе просачивающийся в конденсатор воздух необходимо непрерывно удалять. Для этого устанавливаются воздухоотсасывающие устройства — пароструйные или водоструйные эжекторы.

Конденсат из нижней части конденсатора откачивается конденсатными насосами и подается через подогреватели в котел. Конденсатор устанавливается под турбиной и представляет собой горизонтально расположенный сосуд, сваренный из листовой стали. Внутри корпуса конденсатора на некотором расстоянии от его торцов ввариваются специальные пластины с отверстиями, называемые трубными досками, в которые завальцовываются трубки, образующие поверхности теплообмена. Корпус с торцов закрывается крышками так, что между крышками и трубными досками образуются водяные камеры.

Если в одной из камер установить горизонтальную перегородку, то по-лучим двухходовой конденсатор: охлаждающая вода поступает в нижний (подводящий) патрубок передней камеры, проходит по нижним рядам труб и через заднюю камеру поступает в верхние ряды труб, после чего удаляется из конденсатора.

Для рассмотренной выше турбины К-300-240 Ленинградского металлического завода конденсатор имеет следующие характеристики:

Количество трубок, шт. 19600
Длина трубок, м 8,9
Диаметр dн, мм 28
Диаметр dвн, мм 26
Расход пара при номинальной нагрузке турбины, т/ч 570
Номинальный расход охлаждающей жидкости, т/ч 36000

Источник: Полещук И.З., Цирельман Н.М. Введение в теплоэнергетику: Учебное пособие пособие / Уфимский государственный авиационный технический университет. – Уфа, 2003.

Паровые турбины

Здравствуйте! Паротурбинная установка состоит из паровой турбины и различных вспомогательных устройств (конденсатора, насосов, подогревателей, маслоохладителей и др.). Паровые турбины выполняются многоступенчатыми. Основные преимущества многоступенчатых турбин заключаются в следующем:

1) Ступени турбины работают при оптимальных значениях u/c1, что повышает к.п.д. турбины;

2) экономичность турбины повышается также за счет частичного использования кинетической энергии отработавшего пара в последующих ступенях турбины;

3) в многоступенчатых турбинах можно производить промежуточные отборы пара для регенеративного подогрева питательной воды и теплофикационные отборы, что значительно повышает экономичность теплового цикла.

Одноступенчатые турбины или турбины с малым числом ступеней имеют низкую экономичность и большое число оборотов (до 200—300 об/с). Для снижения числа оборотов используется редукторная передача, применение которой неэкономично и не всегда целесообразно.

В зависимости от характера теплового процесса различают следующие типы паровых турбин:

1. Конденсационные турбины, в которых весь пар после расширения в турбине направляется в конденсатор, где происходит его конденсация. Конденсационные турбины имеют только нерегулируемые регенеративные отборы пара.

2. Турбины с промежуточным регулируемым отбором пара. В этих турбинах, которые устанавливаются на теплоэлектроцентралях (ТЭЦ), часть пара отбирается после промежуточной ступени и направляется тепловому потребителю, а остальной пар расширяется в последующих ступенях и затем направляется в конденсатор.

3. Турбины с противодавлением, отработавший пар которых имеет более высокие давление и температуру, чем у конденсационных. Этот пар после турбины направляется тепловым потребителям, использующим его для технологических или отопительных целей. Турбины с противодавлением широкого распространения не получили, так как количество электроэнергии, которую может выработать турбогенератор, зависит от тепловой нагрузки.

В зависимости от назначения паровые турбины классифицируются следующим образом:

1. Турбины для привода электрических генераторов, работающие с постоянным числом оборотов. При частоте переменного тока 50 Гц они имеют число оборотов n = 3000 об/мин.

2. Турбины для привода различных механизмов (турбовоздуходувок, компрессоров, насосных установок), работающие с переменным числом оборотов.

3. Турбины для транспорта, применяемые в основном в качестве судовых двигателей. Они работают с переменным числом оборотов и, как правило, имеют редуктор для снижения числа оборотов.

По начальному давлению пара различают турбины низкого (до 1,2 МПа), среднего (до 5 МПа), высокого (до 15 МПа), сверхвысокого (15—22,5 МПа), сверхкритического (свыше 22,5 МПа) давления.

Рассмотрим основные детали и узлы паровых турбин.
Ротор активной паровой турбины имеет дисковую конструкцию, а реактивной — барабанную конструкцию, так как с увеличением степени реакции растет перепад давлений по обе стороны дисков, что приводит к появлению больших осевых усилий. К дискам или барабану крепятся рабочие лопатки, профиль и размеры которых изменяются в зависимости от номера ступени турбины, степени реакции и других факторов (рис. 1.).

Сопловые решетки в ступенях турбины образованы направляющими лопатками 1, которые в активных турбинах расположены в неподвижных диафрагмах 2 (рис. 2.). Для возможности сборки и разборки диафрагмы, как и корпус турбины, состоят из двух половин. Диафрагмы делят пространство внутри корпуса турбины на отдельные камеры.

Турбины имеют систему регулирования, которая изменяет количество подаваемого в турбину пара в соответствии с изменением мощности. Эта система автоматически поддерживает постоянное число оборотов турбины и заданную мощность, причем для турбин, работающих с переменным числом оборотов, предусматривается возможность изменения числа оборотов в широких пределах (в зависимости от нагрузки).

Наибольшее распространение получили система с центробежным регулятором и гидродинамическое регулирование.

В центробежном регуляторе (рис. 3.), вал 1 которого приводится во вращение от вала турбины, при изменении числа оборотов изменяется также величина центробежной силы, перемещающей грузы 2. При увеличении числа оборотов грузы расходятся, а при уменьшении — сходятся, что приводит к перемещению золотника 3, который открывает доступ масла в верхнюю или нижнюю полости цилиндра 4. Под действием давления масла поршень 5 перемещается и, воздействуя на клапаны турбины, изменяет количество подаваемого пара. Пар, поступающий в турбину, может подвергаться дросселированию, в результате которого изменяются его давление и расход (дроссельное регулирование). Более экономичным и распространенным является сопловое парораспределение, когда поочередно закрывается несколько клапанов, каждый из которых подает пар лишь к определенной группе сопел первой ступени турбины.

В гидродинамической системе регулирования центробежный регулятор заменен центробежным масляным насосом, колесо которого насажено на вал турбины. При изменении числа оборотов изменяется создаваемое насосом давление масла, которое перемещает золотник, подающий масло для привода регулирующих клапанов турбины.

Для повышения экономичности паротурбинных установок предусматривается максимально возможное снижение давления отработавшего пара (до 2,5—5 кПа). Низкое давление (вакуум) в выхлопном патрубке турбины поддерживается с помощью конденсатора, в котором конденсируется отработавший пар турбины.

Наибольшее распространение получили конденсаторы поверхностного типа с водяным охлаждением (рис.4.).

Отработавший пар поступает в конденсатор через горловину 5 и, соприкасаясь с наружной поверхностью трубок 6, по которым подается охлаждающая вода, конденсируется. Конденсат пара стекает вниз и затем откачивается насосом. Для увеличения скорости воды в конденсаторных трубках перегородка 2 делит водяную камеру 4 на две части. Охлаждающая вода по трубопроводу 1 поступает в нижнюю половину камеры 4, проходит по нижним конденсаторным трубкам в камеру 7, затем поворачивает в верхние конденсаторные трубки и выходит в трубопровод 3. Такой конденсатор называется двухходовым.

Поступающий в конденсатор пар всегда содержит некоторое количество воздуха, который, накапливаясь у поверхности трубок, ухудшает процесс теплообмена между паром и трубками, что приводит к снижению вакуума. Для удаления воздуха конденсационные устройства имеют воздушные насосы. Наиболее распространенными являются пароструйные насосы (паровые эжекторы), которые отличаются простотой конструкции и высокой надежностью (рис. 5.).

Подаваемый к эжектору пар после расширения в сопле 1 поступает в камеру смешения 2, соединенную с воздушным патрубком конденсатора 8 (рис.4.), из которого в эту камеру засасывается паровоздушная смесь с большим содержанием воздуха. После смешивания пара с воздухом поток сжимается в диффузоре 3 до давления, превышающего атмосферное. Затем смесь поступает в специальный охладитель, в котором пар конденсируется, а воздух выбрасывается в атмосферу.

Для конденсации отработавшего в турбине пара требуется большое количество охлаждающей воды. Работа конденсатора характеризуется кратностью охлаждения, равной отношению расхода охлаждающей воды Wв к расходу пара D: m = Wв/D и показывающей, сколько воды требуется для конденсации 1 кг пара. Кратность охлаждения зависит от температуры поступающей воды и составляет 40—80 кг/кг.

Для снабжения паротурбинных установок охлаждающей водой мощные тепловые электростанции обычно строят вблизи рек и больших водоемов. При отсутствии достаточных естественных источников воды применяют оборотную систему водоснабжения с охлаждением циркулирующей в конденсаторах воды в специальных башенных охладителях (градирнях) и реже в охлаждающих бассейнах. Схема градирни показана на рис.6.

Циркуляционная вода подается в верхнюю часть градирни и по желобам 1 поступает на деревянную насадку 2, набранную из большого числа горизонтальных реек или вертикальных щитов. Вода в насадке разбивается на тонкие струйки и капли. Навстречу стекающей воде движется воздух. При этом вода охлаждается за счет конвективного теплообмена, сопровождающегося испарением. Охлажденная вода собирается в бассейне 4, откуда насосами она снова подается в конденсаторы турбин.

Для интенсивного движения воздуха через насадку 2 сооружается вытяжная башня 3, которая вследствие меньшей плотности влажного воздуха и более высокой его температуры создает естественную тягу. При небольшой мощности установки иногда применяют градирни с принудительной циркуляцией воздуха. В таких градирнях вытяжная башня отсутствует, а воздух через насадку продувается с помощью вентиляторов. Исп. литература: 1) Теплотехника, под редакцией А.П.Баскакова, Москва, Энергоиздат, 1982. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.

Паровая турбина: принцип работы 3 разновидностей агрегата

Паровая турбина приносит в наши дома свет и тепло Паровая турбина – это тепловой двигатель, который преобразует тепловую энергию из пара в энергию механическую вращения вала. Посредством паропровода нагретый свежий пар, поступая из котла, подходит к паровой турбине, после чего значительная часть высвобожденной тепловой энергии превращается в механическую работу.

Читайте также  Принцип работы кондиционера в автомобиле

Работа паровой турбины

В турбинной установке находящейся в котле, три среды: вода, пар, а также конденсат образуют такой себе замкнутый цикл. В процессе преобразования, при этом, теряется лишь небольшое количество пара и воды. Это количество воды постоянно восполняется добавкой в установку сырой воды, которая проходит предварительно через водоочиститель. Там вода подвергается обработке химическими составами, необходимыми для удаления содержащихся в воде, не нужных примесей.

Принцип работы:

  • Отработавший пар с довольно-таки пониженными давлением и температурой попадает из турбины в конденсатор.
  • Там он встречает на пути систему различных трубок, по которым непрерывно прокачивается с помощью циркуляционного насоса охлаждающая вода. Берут ее преимущественно из рек, озер или прудов.
  • Соприкасаясь с холодной поверхностью трубка конденсатора, выработавший пар конденсируется, превращаясь тем самым, в воду (конденсат).
  • Непрерывно откачиваясь из конденсатора специальным насосом, конденсат через подогреватель попадает в деаэратор.
  • Оттуда насос передает его в паровой котел.

В установке имеется также турбонаддув и подогреватель. Его функцией является необходимость сообщить конденсату добавочное количество тепла. Современные паротурбинные установки преимущественно оборудованы несколькими подогревателями. К тому же, для подогрева питательной жидкости необходима, главным образом, теплота от пара, который отбирается из промежуточных ступеней самой турбины в пределах 15-30% от совокупного расхода пара. Это дает хорошее повышение КПД установки.

Современная паровая электростанция в действии

Тепло, отработанного в турбине пара поступает в конденсатор через трубки. Количество высвобождаемого тепла велико, и, следовательно, охлаждающая вода должна быть нагрета незначительно. В виду этого, расход у мощных паротурбинных установок очень велик. Иногда он достигает до 20000 м3/час. Особенно если мощность станции 100000 кВт. В этих случаях охлаждающая вода подается циркуляционным насосам из речки и после выполнения своей функции сливается снова в реку, только ниже места забора.

Воздействие сильной струи пара на лопасти приводит вал во вращение в паровых турбинах

В паровых турбинах строение таково, что потенциальная энергия пара, пройдя процесс расширении в соплах, преобразуется в кинетическую энергию, способную двигаться с большой скоростью. Мощная струя пара подается на изогнутые лопатки, которые закреплены по окружности диска, насаженного на вал. Воздействие сильной струи пара на лопасти и приводит вал во вращение.

Чтобы преобразовать энергию пара в кинетическую, нужно обеспечить ему беспрепятственный выход из парогенератора, в котором он находится, по соплу, в пространство. При всем этом, давление пара необходимо выше, чем давление того самого пространства. Следует знать, что пар будет выходить с очень высокой скоростью.

Скорость выхода пара из сопла зависит от таких факторов:

  • От температуры и давления до расширения;
  • Какое давление присутствует в пространстве, в которое он вытекает;
  • Форма сопла, по которому вытекает пар, также влияет на скорость.

Вал турбины должен соединяться с валом самой рабочей машины. Какой она будет, зависит от области, в которой применяется рабочая машина. Это может быть энергетика, металлургия, приводы турбогенераторов, воздуходувные машины, компрессоры, насосы, водный и железнодорожный транспорт.

Устройство паровой турбины

Паротурбинная установка – является основным типом двигателей на современных тепловых и атомных электростанциях, которые вырабатывают 85 – 90% электроэнергии, потребляемой во всем мире.

Вид и устройство паротурбинной установки

Паровые турбины отличаются большой быстроходностью. Она преимущественно равна 3000 об. мин., и имеют при этом сравнительно малые габариты и массу. В современной промышленности сегодня выпускают турбоагрегаты различных мощностей, даже такие, где в одном агрегате при высокой экономичности свыше тысячи мегаватт.

Изобретен данный агрегат очень давно. В его создании принимали участие многие ученые. В России основоположником строительства паровых турбин принято считать Поликарпа Залесова, который внедрял данные сооружения на Алтае в начале девятнадцатого века.

Паровые турбины делятся на:

  • Конденсационные;
  • Теплофикационные;
  • Специального назначения;
  • Активные;
  • Реактивные;
  • Активно-раективные.

Наиболее распространенная – конденсационная турбина – работает с выпуском отработанного пара в конденсатор с глубоким вакуумом. От промежуточных ступеней ее турбин, как правило, берется некоторое количество пара в целях регенерации. Главное назначение конденсационных установок – выработка электроэнергии.

Строение паровой турбины

Паровые турбины строят в качестве стационарных конструкций, которые используют в основном на заводских силовых установках или электростанциях, и транспортных, необходимых для работы судовых котлов.

Независимо от принципа работы, суть происходящих действий будет оставаться неизменной – струя пара, вытекающая из сопла, будет направляться на лопатки диска, имеющегося на валу, и тот приводится в действие.

Паровые турбины различают по следующим характеристикам:

  • Оборотам;
  • Количеству корпусов;
  • Направлению движения струи пара;
  • Числу валов;
  • Расположению конденсационной установки;
  • Функциональности.

Паровые турбины обеспечивают длительную выработку механической энергии при температуре охлаждающей их воды до 330 С Цельсия. Также турбины должны выполнять продолжительную надежную работу с нагрузкой номинальной от 30 до 100%. Что необходимо для регулирования распределения электрической нагрузки. Самые распространенные конденсационные турбины обязаны обеспечивать длительное действие при температуре выхлопного процесса до 700 С.

Паровая электростанция: особенности работы установки

Система регулирования работы турбины при резком сбросе мощности и отключении ТГ от сети, должна ограничивать быстрый заброс частоты вращения ее ротора, и не допустить срабатывания датчика безопасности. Работа турбины допускает возможность мгновенного сброса электронапряжения до нуля. Также турбины должны давать возможность восстановить нагрузку до исходной, или любой другой цифры в регулировочном диапазоне, при скорости не менее 10% от номинальной мощности за секунду.

Паровые турбины используют в основном на заводских силовых установках или электростанциях

Обязательные режимы работы:

  • С отключенным подогревателем высокого давления;
  • С нагрузкой в рамках собственных нужд в пределах 40 минут после сброса;
  • На холостом ходу 15 минут после сброса электро- нагрузки;
  • Для проведения испытания на холостом ходу 20 часов после пуска турбины;
  • Срок службы рабочих турбин между ремонтами должен быть не менее 4 лет;
  • Новые агрегаты имеют гарантию в 5 лет;
  • Период работы на отказ у паровой турбины не менее 6000 часов;
  • Коэффициент готовности у установки не менее 0,98.

Паровая турбина имеет срок службы более 30 лет. Исключением являются лишь быстроизнашивающиеся детали и элементы.

Паровая турбина (видео)

Паровая турбина своими руками – агрегат, который является сердцем практически любой электростанции, работает по принципу превращения энергии из паровой в механическую. Однако такую машину вполне можно сделать и в домашних условиях. Конечно же это будет мини-устройство, и скорее всего ваша самодельная турбина будет газовая или воздушная, но такая модель так же пригодится в быту как и паровая турбина для ТЭЦ. Правильно разработанные схема, чертеж и рисунок помогут вам добиться положительного результата от самоделки.