Чем отличается редуктор от мультипликатора?

Редукторы и мультипликаторы

Редукторы и мультипликаторы предназначены для преобразования движения по скорости (угловой или линейной) и по усилию (моменту или силе). Редукторы и мультипликаторы могут быть вращательные — входное и выходное звено (вал) вращаются, поступательные — входное и выходное звено движутся поступательно и с различным движением звеньев. В последнем случае редуктор дополнительно выполняет функцию преобразования вида движения.

Редукторы

Вращательные редукторы чаще всего выполняются на основе зубчатых передач. Их и различают по виду передач: цилиндрические, конические, червячные, планетарные, волновые. Каждый вид редукторов имеет свои особенности: цилиндрический редуктор имеет высокий КПД, входной и выходной валы у него параллельны; конический редуктор также имеет высокий КПД, и позволяет передать движение через скрещивающиеся валы; червячный редуктор обеспечивает высокую плавность движения, имеет малые габариты, валы у него взаимно перпендикулярны; планетарный редуктор, как и червячный, компактен, входной и выходной валы у него, как правило, соосны; волновой редуктор имеет большое передаточное отношение при малых габаритах, отличается отсутствием геометрического люфта в зацеплении, валы у него соосны. Конечно, каждый тип редуктора имеет свои недостатки, ограничивающие его применение. Например, червячный редуктор. У него пониженный КПД, он требует хорошей смазки и охлаждения, у него ограничена скорость вращения входного вала. При однозаходном червяке, редуктор обладает свойством самоторможения, поэтому, его нельзя применять, если, в процессе движения, момент на выходном валу меняет свой знак (например, при торможении) и может оказаться больше допустимого по условию прочности деталей редуктора. У всех редукторов передаточное отношение

(6.31)

где wвх, jвх– скорость и угол поворота входного вала редуктора;

wвых, jвых – скорость и угол поворота выходного вала редуктора.

Соответственно, скорость выходного вала

(6.32)

Угол поворота выходного вала

(6.33)

Момент на выходном валу

(6.34)

где Мвх – момент на входном валу;

h – КПД редуктора.

КПД редуктора зависит от его типа и величины нагрузки. С уменьшением нагрузки КПД падает. У редукторов с низким КПД и большим передаточным отношением наблюдается самоторможение, приводящее к ударам при реверсе крутящего момента на выходном валу редуктора.

При выборе редуктора по каталогу надо знать номинальную мощность и частоту вращения приводного двигателя, частоту вращения выходного вала редуктора, вращающий момент на выходном валу и эксплуатационный коэффициент нагрузки. Эксплуатационный коэффициент зависит от времени работы редуктора в течение суток, количества включений в сутки и инерции приводимых редуктором механизмов. При большом, приведенном к валу редуктора, моменте инерции возможна значительная ударная нагрузка на редуктор и, соответственно высокий эксплуатационный коэффициент. С помощью эксплуатационного коэффициента учитывают также тепловое состояние редуктора − температуру окружающей среды и относительную продолжительность включения редуктора. Полученный эксплуатационный коэффициент должен быть меньше приведенного в каталоге для каждого конкретного редуктора. В управляемом приводе, при обеспечении плавных пусков и торможений, эксплуатационный коэффициент может быть значительно снижен.

Редукция в поступательном движении может быть обеспечена самыми разными механизмами: клиновыми, рычажными, цепными, на основе зубчатых реек и шестерен и т.п. Простейшим редуктором может служить обыкновенный полиспаст (рис. 6.17).

Рис. 6.17. Полиспаст

Передаточное отношение полиспаста u = vвх/vвых = sвх/sвых равно числу ветвей полиспаста n. В изображенном на рис. 6.17 полиспасте
u = n = 4. Другой часто используемый редуктор − клиновой механизм изображен на рис. 6.18. При малых углах a передаточное отношение может быть очень большим. Здесь u = sвх/sвых = ctg a.

Рис. 6.18. Клиновой механизм

Редукторы с преобразованием вида движения, как и поступательные редукторы, строятся на основе различных механизмов. Часто используется редуктор на основе пары винт-гайка (рис. 6.19). Его передаточное отношение u = wвх/vвых = jвх/sвых = 2p/t, где t – шаг винта.

Рис. 6.19. Редуктор на основе пары винт-гайка

При однозаходном винте с малым шагом, передаточное отношение такого редуктора может быть достаточно большим. Винт, в этом случае можно соединить напрямую с двигателем. А если в качестве винтовой пары использовать ШВП или РВП, получим редуктор без люфтов, высокой точности и жесткости и с высоким КПД.

Мультипликаторы

Мультипликаторы, как и редукторы, преобразуют движение по скорости и усилию. В отличие от редукторов, мультипликаторы имеют передаточное отношение u

Мультипликатор в редукторе

С появлением механических передач возникла потребность в преобразовании скорости вращения. Некоторые механизмы нуждаются в ее увеличении, другие – в снижении. Механические устройства, повышающие скорость на выходе одновременно с передачей и понижением крутящего момента, называются мультипликаторами. Чаще всего они производятся в виде отдельных узлов с передачами различного типа. Используются в машинах, в которых вал двигателя вращается с недостаточной скоростью для выполнения конкретной операции.

Что такое мультипликатор в редукторе и его назначение

По сути, мультипликатор (ускоритель) является редуктором наоборот, так как его передаточное отношение меньше единицы. Яркий пример, механическая прялка, в которой малые обороты колеса с большим диаметром преобразуются в большие обороты прялки при помощи педального привода. По такому же принципу работает велосипед (при одном обороте звездочки посредством цепи колесо поворачивается несколько раз), сепаратор, центрифуга. Коробка передач автомобиля тоже является мультипликатором с несколькими значениями передаточного числа.

В мультипликаторах используются различные типы механических передач с одной или несколькими ступенями:

  • зубчатых:
  • цилиндрических (оси параллельные, зубы прямые или косые);
  • конических (оси пересекаются, зубы прямые или косые);
  • реечных (оси перекрещиваются);
  • винтовых:
  • червячных (с параллельными или скрещивающимися валами),
  • гипоидных (оси с гипоидным смещением);
  • из гибких элементов:
  • ремней (круглых, зубчатых, клиновых);
  • цепей (пластинчатых, втулочных, роликовых);
  • фрикционных (передача осуществляется за счет трения).

Существуют комбинированные мультипликаторы, объединяющие несколько различных передач.

Принцип действия

У цилиндрических зубчатых передач встречается внутреннее и внешнее зацепление с различным уклоном, используются прямо- и косозубые колеса. Прочность увеличивается за счет площади контакта косых зубов. Угол уклона ограничивается 20-ю градусами. В конических механизмах валы чаще всего пересекаются под углом 90 о , что повышает уровень допустимой нагрузки.

  • способны на передачу больших мощностей;
  • компактные;
  • быстро вращаются;
  • обладают постоянными передаточными отношениями
  • имеют высокий КПД.

Движение передается жестко, работа шумная, смазка требуется часто.

Червячные механизмы передают движение между осями, расположенными под углом 90 о . Скорость колеса отличается от скорости червяка, что снижает КПД и ускоряет износ. Улучшить показатели позволяет использование при изготовлении пар материалов, отличающихся антифрикционными характеристиками (стали в паре с бронзой, чугуном, латунью).

  • обладают немалыми передаточными отношениями;
  • работают бесшумно и плавно;
  • оснащены функцией самоторможения;
  • обладают высокой кинематической точностью.

К недостаткам можно отнести необходимость в дорогих материалах, быстрый износ, низкий КПД.

Гибкие звенья (канаты, ремни, шнуры, ленты, цепи) используются в механизмах, в которых необходимо передать движение на расстоянии. Передаточное отношение может быть переменным или постоянным, величина меняется плавно или ступенчато.

Передачи с ремнями бывают кругло-, клино- и плоскоременные.

К плюсам можно отнести:

  • бесшумную работу;
  • возможность передать движение на сравнительно большие расстояния;
  • наличие дополнительной защиты за счет упругости ремня;
  • простоту эксплуатации.

Механизмы с ремнями большие, работу нарушает проскальзывание, повышается нагрузка на валы, ремни нужно часто менять.

Работа цепной передачи основана на взаимодействии звездочек и цепи.

  • пластинчатые зубчатые;
  • роликовтулочные;
  • втулочные.

Первые обеспечивают самую плавную работу, вторые сравнительно тяжелые, но изнашиваются медленно, третьи легкие, но требуют частой замены из-за износа.

Цепные передачи способны выдерживать большие нагрузки, не буксуют и не скользят, но работают шумно, цепи быстро изнашиваются, часто требуется смазка.

Фрикционные механизмы различаются по расположению валов (параллельно под углом), виду контакта (внутренний, внешний), регулируемости.

Сферы применения

Мультипликаторы используются в:

  • строительстве (в составе инструментов, увеличивающих крутящий момент и сборке и разборке резьбовых соединений);
  • нефте-, газо- и горнодобывающей промышленности;
  • аэрокосмической и нефтехимической промышленности;
  • в машиностроении;
  • при производстве подъемных механизмов, канатных дорог;
  • при возведении металлоконструкций и мостов;
  • в вагоно-, самолетостроении;
  • электроэнергетике.

При выборе вида мультипликатора желательно получить совет технического консультанта. Сообщите ему требования к механизму и данные об условиях эксплуатации. При необходимости специалист может посетить предприятие, чтобы глубже вникнуть в работу и предложить лучшую модель.

Кто в масле катается

Обзор основных классов механических редукторов

Иллюстрация: Яковлев Артем / edu.ascon.ru

Недавно европеец Оскар Ван Девентер напечатал на 3D-принтере редуктор с экстремально высоким передаточным числом — 11373076. В этом механизме изобретатель соединил два планетарных редуктора. При увеличении количества зубцов шестеренок, использованных в механизме, передаточное число можно увеличить и до 1141624705. Чем такой редуктор может быть полезен, Ван Девентер не объяснил, рассказав только, что при его помощи обычной стоматологической бормашиной можно сдвинуть локомотив. Правда, с очень небольшой скоростью. Вдохновившись разработкой европейца мы решили разобраться в основных типах механических редукторов.

Читайте также  Чем отличается tsi от tfsi?

Редуктор представляет собой механизм, позволяющий передавать и преобразовывать крутящий момент с одного вала на другой. Если такой механизм преобразует высокую угловую скорость ведущего вала в более низкую ведомого, его называют демультипликатором, а если наоборот — мультипликатором. Впрочем, так сложилось, что термин демультипликатор используется крайне редко, а устройство, понижающее угловую скорость, называют просто редуктором. В зависимости от типа такой механизм может состоять из нескольких типов шестерен, червяков и валов.

Основными характеристиками редукторов являются передаваемая мощность, угловые скорости и количество валов, а также передаточное число. Любые редукторы уменьшают передаваемую мощность за счет потерь на механическую передачу крутящего момента — из-за трения, массивности конструкции, нагрузок на валах. Угловые скорости на ведущем валу и ведомом могут различаться в десятки, сотни и тысяч раз благодаря передаточному числу редуктора.

Передаточным числом называется соотношение количества зубьев шестеренки на ведущем валу к их числу у шестеренки на ведомом. Оно записывается целым или дробным числом и фактически обозначает, сколько именно раз должен провернуться ведущий вал, чтобы ведомый совершил один полный оборот. В случае с редуктором Ван Девентера, ведущий вал необходимо повернуть 11 миллионов 373 тысячи 76 раз. Только тогда ведомый вал совершит один полный оборот.

В целом редукторы позволяют увеличить усилие на ведомом валу, при этом потратив часть мощности на ведущем и уменьшив скорость вращения. Эту особенность используют тогда, когда необходимо работать с большими нагрузками, например, при помощи относительно маломощного мотора приводить в движение большой по массе транспорт. Например, двигатель седельного тягача КамАЗ-65225 мощностью 400 лошадиных сил может через коробку передач (многоступенчатая разновидность редуктора) сдвигать автопоезд полной массой до 75 тонн.

Сегодня редукторы используются во многих отраслях: на автомобилях, в самолетах и вертолетах, в поездах, станках, велосипедах, то есть везде, где нужно передавать вращательный момент с одного агрегата на другой. Механизмы, позволяющие передавать крутящий момент с одного вала на другой, принято делить на пять наиболее распространенных основных классов: цилиндрические, конические, червячные, планетарные и комбинированные. В последних могут сочетаться несколько типов редукторов.

Иллюстрация: Чабанный Александр / edu.ascon.ru

Цилиндрический редуктор представляет собой механизм, в котором ведущий вал и ведомый находятся в параллельных плоскостях. Передача в них осуществляется с большей шестеренки с прямыми или косыми зубцами на меньшую, по своей форме напоминающую цилиндр. Такие редукторы делятся на несколько подтипов: вертикальные (валы находятся друг над другом) и горизонтальные. Цилиндрические редукторы бывают одно-, двух-, трех- и четырехступенчатыми в зависимости от количества шестерен, установленных между ведущим и ведомым валами.

Цилиндрические редукторы имеют очень высокий коэффициент полезного действия, который может достигать 98 процентов, то есть потеря мощности при передаче вращательного момента с одного вала на другой будет относительно небольшой. Благодаря высокому коэффициенту полезного действия в цилиндрических редукторах практически отсутствует эффект рассеивания передаваемой энергии, а значит рабочие элементы редуктора практически не нагреваются.

Такие механизмы используются преимущественно в различных металлорежущих станках, станках для обработки древесины, измельчителях и бетономешалках, на мельницах. Цилиндрические редукторы малочувствительны к рывковым нагрузкам, выдерживают большое количество пусков и остановок. При этом они лишены самоторможения, то есть, приложив определенное усилие на ведомый вал, можно провернуть ведущий. При этом конструкция таких редукторов достаточно шумная, а сами они обладают низким передаточным числом.

Иллюстрация: Manuel Neuer / grabcad.com

Конический редуктор используется для передачи вращательного момента с ведущего вала на ведомый в случае, если плоскости их осей пересекаются. В них используются конические шестеренки. Такие механизмы имеют меньшую надежность по сравнению с цилиндрическими, но обладают довольно высоким коэффициентом полезного действия, который может достигать 95 процентов. Благодаря конической конструкции шестерен таких редукторов, они могут иметь несколько выходных валов, оси вращения которых, например, можно расположить в виде креста.

В современных конических редукторах как правило используется колесное соединение — внутри них на концах валов установлены конические шестеренки, которые своими конусами опираются на другую шестеренку. Плоскость последней находится в одной плоскости с плоскостями осей валов. В этом случае, если колесное соединение одно, ведомый и ведущий валы будут вращаться в одном направлении. Конические редукторы нередко используются для изменения направления передачи.

Как правило диапазон передаточных чисел в конических редукторах составляет от одного до пяти, но углы наклона оси ведомого вала к ведущему могут быть самыми разнообразными. Такие механизмы, как и цилиндрические, чаще всего используются в различных станках, например, сверлильных. Как и цилиндрические, конические редукторы обратимы, то есть вращая их ведомый вал, можно провернуть ведущий. Однако, из-за особенностей своей конструкции, конические редукторы могут иногда заедать.

Иллюстрация: Исаков Сергей / edu.ascon.ru

Червячные редукторы получили название от типа используемой в них передачи. В самом простом исполнении эти механизмы состоят из червячного колеса (шестеренки с косыми зубцами) и самого червяка. Последний представляет собой цилиндр с нанесенной на него резбой, которая при вращении напоминает червяка. В таком редукторе ведущий вал приводит в движение червяка, резьба которого сдвигает косые зубья червячного колеса, заставляя его вращаться.

Редукторы с червячной передачей придумали как альтернативу механизмам с обыкновенной зубчатой передачей, например, цилиндрическим. Они обладают гораздо меньшими размерами, но имеют большее передаточное число. Например, при двухзаходном червяке (имеет две параллельных резьбы) и червячном колесе с сотней зубьев передаточное число составит 50. Это означает, что ведущий вал должен будет совершить 50 полных оборотов, чтобы ведомый вал повернулся один раз.

Червячные редукторы имеют очень высокий коэффициент самоторможения. Это означает, что приложив усилие к ведомому валу провернуть ведущий скорее всего не удастся. Кроме того, червячные редукторы имеют относительно невысокий коэффициент полезного действия (от 70 до 92 процентов) и крайне чувствительны к смазке. Их используют для передачи малой мощности в условиях, когда нет достаточного места для размещения цилиндрического или конического редукторов. Чаще всего червячные редукторы используют для привода конвейеров или ворот.

Иллюстрация: Филимонов Илья / edu.ascon.ru

Планетарный редуктор — это уже более сложное механическое устройство, получившее свое название из-за способа размещения ведущей, передаточных и ведомой шестерен. Механизм состоит из солнечной шестерни, расположенной в центре конструкции, сателлитов (меньших шестеренок) и эпицикла (коронной шестерни), расположенной на периферии. Вращение коронной шестерни осуществляется солнечной через сателлиты. Последние механически соединяются водилом, кольцом со штырями, на которые и крепятся сателлиты.

Особенностью планетарного редуктора является то, что вращение можно подводить к любому из его элементов и снимать с любого другого. При этом третий элемент необходимо остановить. Например, вращение можно подвести к одному из сателлитов, а снимать его с коронной шестерни. В этом случае солнечная шестерня должна быть неподвижной. При подведении вращения к солнечной шестерне и снятия его с коронной в редукторе неподвижным остается водило. В некоторых редукторах водила нет.

Благодаря изменению схемы подвода и снятия вращения можно не меняя сам редуктор изменять его передаточные числа в очень широком диапазоне. Именно по этой причине, планетарные редукторы, пожалуй, могут иметь наибольшие передаточные числа среди таких механизмов других классов. Коэффициент самоторможения у планетарных редукторов зависит от их передаточного числа, но при вращении ведомого вала все же можно добиться и вращения ведущего.

Планетарные редукторы коробки переключения передач во втулке заднего колеса велосипеда.

Виды редукторов

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

В современном оборудовании, как промышленном, так и бытовом, широко распространены механические редукторы. Они предназначены для изменения и передачи момента вращения от двигателя к исполнительным органам и отличаются по типу и конфигурациям в зависимости от выполняемых задач:

  • уменьшить частоту вращения и увеличить вращающий момент;
  • увеличить частоту вращения;
  • изменить направление вращения;
  • изменить угол оси выходного вала.

Основными характеристиками редукторов являются:

  • максимальный крутящий момент;
  • максимальная передаваемая мощность;
  • передаточное число;
  • максимальная скорость вращения (об/мин).
  • габариты, в т.ч. и присоединтиельные размеры;
  • расстояние от валов, до основных присоединительных поверхностей;
  • масса.

Редукторы, повышающие скорость вращения на выходе, называются мультипликаторами. К примеру, в классической 5-ти ступенчатой КПП в автомобиле 5 передача зачастую имеет передаточное соотношение меньше 1, т.е. частота на выходе выше.

Основные виды:

Редукторы с цилиндрическими передачами

Данный тип редукторов является наиболее распространенным в промышленности. Они способны передавать большие мощности и крутящие моменты. Их КПД самый высокий среди остальных разновидностей. Они просты и надежны в эксплуатации, обладают большим ресурсом и плавностью хода. Относительно дешевые в производстве, т.к. используют распространенные и стандартизированные детали и конструкционные материалы. Передаточное отношение небольшое.

Читайте также  Чем отличается квадрицикл от квадроцикла?

Передачи различают с прямыми зубьями, с косыми зубьями, шевронные и передачи Новикова. Косозубые передачи наиболее распространены в силу большей нагрузочной способности и плавности хода.

По расположению осей валов в пространстве выделяют следующие типы:

  • с разнесенными осями;
  • соосные;
  • горизонтальные,
  • вертикальные.

По числу ступеней разделяют одно- двух- и многоступенчатые редукторы.

Однако у цилиндрических редукторов есть и свои ограничения. Основное заключается в том, что оптимальное передаточное число на одну ступень не превышает i ≤ 5. Для большего соотношения необходимо увеличивать количество ступеней, что, безусловно, повлечет усложнение, удорожание и увеличение массогабаритных параметров.

Конические редукторы

Конические редукторы преобразуют и передают вращающий момент между пересекающимися осями валов под определенным углом, отличным от 180. Как правило, это 90°. Как и цилиндрические, они имеют эвольвентное зацепление зубчатых колес. По параметрам нагрузочной способности несколько уступают цилиндрическим редукторам и сложнее в производстве.

Данные редукторы предпочтительнее цилиндрических в случаях, когда компоновка не позволяет использовать соосную или параллельную схему расположения валов.

Червячные редукторы

Передача вращающего момента происходит от червяка на приводном валу к зубчатому венцу червячного колеса выходного вала. Валы расположены перекрестно под 90°, но не пересекаются. Достоинствами таких редукторов являются высокая компактность, простота конструкции, высокое передаточное соотношение (до 84) и самоторможение. К недостаткам относятся низкий ресурс (работа осуществляется при постоянном скольжении профиля червяка о зубчатый венец колеса), дорогостоящие материалы червячного колеса, ограниченная мощность и повышенный нагрев.

Планетарные редукторы

Данный вид получил большое распространение в тяжелом машиностроении и в автомобилях. Конструкция обладает рядом преимуществ: большое передаточное соотношение и малые габариты (меньше, чем у цилиндрических и червячных). Основные действующие компоненты это: солнечная шестерня, коронная шестерня, сателлиты и водило. Данный тип редуктора бывает одно- и многоступенчатым. Наиболее часто встречается в бортовых редукторах грузовых автомобилей.

Волновые редукторы

Особенностью данного типа является очень высокое передаточное соотношение при небольших габаритах, но малый ресурс, низкая скорость и передаваемая мощность из-за волнового элемента. Основными конструктивными элементами являются: корпус с внутренними зубьями, гибкое колесо с зубьями, которое изготовлено в форме стакана и водило. Гибкое колесо иммеет на один или несколько зубьев меньше, чем корпус. Водило выполнено в форме эксцентрика или эллипса. Вращаясь на валу, оно за счет эксцентриситета прижимает гибкое колесо с одной строны к корпусу, при этом, противоположная часть выходит из зацепления. За один оборот водила гибкое колесо повернется на разницу в количества зубьев, тем самым обеспечивая редукцию. Основное применение данного типа – это области космонавтики, точных приборов и задач, где необходимы высокий момент и минимальные габариты.

Комбинированные редукторы

Для решения всевозможных задач в машиностроении набора характеристик редукторов определенного типа бывает недостаточно. Поэтому часто применяют схему комбинированных редукторов. Например: необходимо передать высокую мощность и вращающий момент, но валы должны быть расположены под углом 90°, для этого применяют коническо-цилиндрический редуктор, первая ступень которого коническая, остальные — цилиндрические.

Мотор-редукторы

Все описанные редукторы могут встречаться в исполнении мотор-редуктор. Данная разновидность отличается тем, что редуктор и электродвигатель объединены в единый силовой механизм. Это приводит к улучшению массогабаритных характеристик и повышение надежности узла.

Стоит подчеркнуть, что почти каждый современный сложный механизм имеет в своем составе редуктор, который преобразует вращающий момент от двигателя в момент, необходимый для работы исполнительного органа. И здесь выбор подходящей модели, ее надлежащая эксплуатация и обслуживание позволит полноценно использовать весь заложенный срок службы как редуктор, так и приводимый механизм.

План-конспект занятия «Редукторы и мультипликаторы»

План-конспект занятия по теме «Редукторы и мультипликаторы»

ДТО «Электроник» (программа «Робототехника»)

Цель: сформировать понятие о механической передаче, редукторах, их видах (повышающий/понижающий); дать понятие о передаточном отношении; научить его определять; развивать умение определять и объяснять назначение ведущей и ведомой детали.

образовательная: закрепить знания в решении вопросов самостоятельного конструирования и изготовления простейших технических объектов; применение полученных знаний на практике; способствовать запоминанию основной терминологии;

воспитательная: воспитывать у учащихся навыки самостоятельной работы, формирование у учащихся навыков совместной деятельности, умения работать в группах;

развивающая: способствовать овладению основными способами мыслительной деятельности учащихся (учить выделять главное, анализировать, сравнивать, доказывать и опровергать, ставить и решать проблемы); способствовать формированию интереса учащихся к предмету, развивать внимания, логическое мышление.

Методическое оснащение урока:

-Компьютерный класс, конструктор Lego Mindstorms NXT.

-3 D образцы видов механических передач.

-Презентация «Механические передачи»

Методы обучения: Словесные (рассказ, объяснение); наглядные (демонстрация презентации, наглядных пособий, самостоятельные наблюдения учащихся). Практические (упражнения по закреплению знаний, самостоятельная творческая работа).

Формы организации познавательной деятельности учащихся: самостоятельная творческая работа.

Методы проверки ключевых компетенций учащихся: устный опрос, выполнение и анализ самостоятельной работы.

Тип урока: комбинированный

Формы обучения: фронтальная, групповая,

Методы обучения: информационно-сообщающий, объяснительный, инструктивно-практический

1. Понятие механизма.

Механическая передача — механизм, служащий для передачи и преобразования механической энергии от энергетической машины до исполнительного механизма (органа) одного или более, как правило, с изменением характера движения (изменения направления, сил, моментов и скоростей). Как правило, используется передача вращательного движения

Зýбчатая переда́ча — это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса.

передача вращательного движения между валами, которые могут иметь параллельные, пересекающиеся и скрещивающиеся оси.

преобразование вращательного движения в поступательное, и наоборот.

При этом усилие от одного элемента к другому передаётся с помощью зубьев.

Основным назначением зубчатой передачи является уменьшение физических усилий при выполнении работы (редуктор), или увеличение скорости вращения вала (мультипликатор)

3. Передаточное число редуктора.

(Обучающиеся собирают по инструкции и 3 D модели «Редуктор№1»

Ведущие и ведомые элементы зубчатой передач всегда находятся в определенной зависимости друг от друга. Эта зависимость характеризуется передаточным числом ( u ), которое можно определять по формуле:

где z 1 и z 2 — число зубьев соответственно ведущего и ведомого колес передачи. Передаточное число — величина отвлеченная и размерности не имеет. Передаточное число может быть любым — как целым, так и дробным. (Ведущее и ведомое колеса учитель демонстрируются на модели.)

3. Самостоятельная работа учащихся: 20 мин.

1. По образцу и 3 D модели LDD на компьютере, собирают редуктор №2.

Определяют ведущие и ведомые элементы, высчитывают передаточное число.

2. По образцу и 3 D модели LDD на компьютере, собирают редуктор №3. Определяют ведущие и ведомые элементы, высчитывают передаточное число. Выдвигают предположения о функции и необходимости промежуточной (паразитной) шестерни.

В случае необходимости используется задание повышенной сложности (приложение).

4. Заключительная часть: 2 — 3 мин.

Проверка знаний учащихся:

1. Что такое редуктор? Мультипликатор?

2. Что такое ведущее и ведомое звено в передаче?

3. Какие параметры можно использовать для расчета передаточного отношения?

Домашнее задание: примеры передаточных механизмов в быту, определить их виды и принципы работы.

Задание повышенной сложности

Откройте в программе LDD файл «Редуктор №4».

Постройте в соответствии со 3 D -моделью действующую модель редуктора из деталей LEGO

Заполните таблицу ( u = z 2/ z 1, где u — передаточное число, z 2 – число зубьев ведомой шестерни, z 1 – число зубьев ведущей шестерни)

Редуктор от «А» до «Я»

Редуктор представляет собой составной механизм приводов машин. Его основное назначение — уменьшение частоты вращения ведомого вала при одновременном увеличении крутящего момента. Конструкцией редуктора могут быть предусмотрены одна или несколько передач зацеплением.

1. Классификация редукторов

Редуктор общемашиностроительного назначения. Этот тип оборудования представляет собой самостоятельный агрегат, используемый в приводах машин. Его технические характеристики отвечают общим для разных применений требованиям. Конструктивно общемашиностроительные редукторы могут отличаться.

Специальные редукторы разработаны для автомобильной, авиационной и других узкоспециализированных отраслей. Из названия понятно, что агрегаты этой группы должны соответствовать специфике и параметрам конкретного применения.

Редукторы можно классифицировать по следующим признакам:

  • По типам передач и числу ступеней;
  • По расположению осей входного/выходного валов в пространстве и относительно друг друга;
  • По способу крепления.

1.1 Количество ступеней и расположение валов

У двух- и трехступенчатых редукторов развернутых и раздвоенных схем (в случае с двухступенчатыми моделями еще и соосных схем) есть ряд преимуществ перед агрегатами других типов — прежде всего это высокий КПД и устойчивость к нагрузкам. Соосные цилиндрические редукторы могут комплектоваться тихоходной ступенью с внутренним зацеплением. Планетарные и волновые агрегаты с соосным расположением осей валов также обеспечивают высокую производительность и широкий диапазон передаточных чисел.

Читайте также  Чем отличается двигатель постоянного тока от переменного?

При комплектации машин и механизмов, требующих пересекающегося расположения валов, будут эффективны двух- и трехступенчатые конические (коническо-цилиндрические) редукторы.

Агрегаты с червячными (червячно-цилиндрическими, цилиндрическо-червячными) передачами характеризуются высоким передаточным числом и низким уровнем шума. Однако КПД у таких моделей ниже, чем у цилиндрических аналогов.

Вертикальное расположение выходных валов требует меньшего пространства. В механизмах, где необходима подобная компоновка, чаще используются червячные или конические редукторы. Удобство заключается в том, что ось двигателя находится в горизонтальном положении.

Таблица 1. Классификация редукторов по расположению осей валов

Параллельные оси входного/выходного валов

  • оси в горизонтальной плоскости;
  • оси в вертикальной плоскости (входной вал — над или под выходным валом);
  • оси в наклонной плоскости.

Совпадающие оси входного/и выходного валов (соосный)

1. Горизонтальное
2. Вертикальное

Пересекающиеся оси входного/выходного валов

1. Горизонтальное
2. Горизонтальная ось входного вала и вертикальная ось выходного вала
3. Вертикальная ось входного вала и горизонтальная ось выходного вала

Скрещивающиеся оси входного/выходного валов

1. Горизонтальное (входной вал — над или под выходным валом)
2. Горизонтальная ось входного вала и вертикальная ось выходного вала
3. Вертикальная ось входного вала и горизонтальная ось выходного вала

1.2 Типы используемых передач

1.2.1 Червячные редукторы

Червячный редуктор — наиболее распространенный тип редукторов. Привод имеет компактные размеры (в сравнении с цилиндрическими агрегатами). Передаточное отношение червячной пары может достигать 1-100 (иногда и выше).

Потенциал увеличения крутящего момента при снижении частоты вращения вала у червячных редукторов выше, чем у оборудования с другими типами передач. Передаточное число того же порядка можно получить при эксплуатации трехступенчатого цилиндрического редуктора. В червячных агрегатах для решения этой задачи достаточно одной ступени. Еще одно преимущество — простота и низкая стоимость червячных редукторов. Использование червячного зацепления позволяет снизить уровень шума передачи, обеспечить высокую плавность хода.

Функция самоторможения присутствует только в червячных редукторах. Ее принцип основан на торможении ведомого вала при отсутствии движения на ведущем валу (червяке). Самоторможение в передаче осуществляется в тот момент, когда угол подъема ведущего вала меньше или равен 3,5 градусам.

При выборе червячного редуктора следует учитывать тот факт, что при увеличении передаточного числа снижается КПД червячной передачи. Отсюда — потери энергии вследствие трения червяка об зубья колеса.

Ресурс червячных приводов составляет, в среднем, 10 тысяч часов.

1.2.2 Червячный глобоидный редуктор

Винт глобоидного червячного редуктора имеет выпуклую форму (в других червячных передачах он цилиндрический). Эта конструктивная особенность увеличивает передачу крутящего момента и мощность привода.

Глобоидные редукторы предназначены для использования в условиях, предполагающих высокую надежность, отсутствие обратного проскальзывания и динамических толчков на выходном валу. Чаще всего редукторы этого типа применяются в барабанных приводах лифтов: глобоидная пара адаптирована к переменным нагрузкам, возникающим при подъеме и торможении кабины, в состоянии поддерживать нормальную реверсивность при эксплуатации.

Таблица 2. Допустимые нагрузки для червячных глобоидных редукторов типа ЧГ

Номинальное передаточное число

Частота вращения червяка, об/мин

1.2.3 Цилиндрические редукторы

В цилиндрических редукторах устанавливаются цилиндрические зубчатые передачи. Комплектация таких приводов может отличаться положением входного/выходного валов и количеством ступеней. Одноступенчатые цилиндрические агрегаты классифицируются только по расположению валов. Передаточные числа варьируются в диапазоне 1,6-6,3.

Схемы исполнения цилиндрических пар:

  • развернутая узкая;
  • развернутая;
  • раздвоенная;
  • соосная.

Наиболее распространена развернутая схема. Она позволяет выпускать унифицированные колеса, валы и шестерни, которые подходят для производства редукторов разных типоразмеров. Этот фактор является определяющим для серийного производства, т.к. способствует снижению себестоимости выпускаемой продукции.

С той же целью выбирается левое направление зуба шестерни и правое направление колеса для всех ступеней редуктора. При индивидуальной комплектации единичного редуктора целесообразнее использовать следующую схему: левое направление зуба шестерни на первой ступени, правое — на второй ступени. Такая комплектация снизит осевую нагрузку на опоры.

Форма редукторов, проектируемых по развернутой схеме, удлиненная. Вес такого агрегата будет на 15-20% больше приводов, сконструированных по раздвоенной схеме.

Раздвоенная схема применима для тихоходной и быстроходной ступеней. Во втором варианте она наиболее рациональна, так как промежуточный вал может быть изготовлен по принципу вала-шестерни, а быстроходный вал становится «плавающим».

При соосной схеме оси быстроходного и тихоходного валов совпадают. Вес и габариты редуктора, собранного по соосной схеме, аналогичны моделям с развернутой схемой. Стоимость обоих типов агрегатов практически одинакова.

Одна из основных технических характеристик соосного редуктора — увеличенная мощность быстроходной ступени, что достигается за счет снижения нагрузки на нее. Однако конструктивно такие агрегаты более сложные.

Ресурс цилиндрического редуктора — 25 тысяч часов и более.

Таблица 3. Допустимые нагрузки для цилиндрических редукторов ЦУ (одноступенчатых горизонтальных)

Номинальный вращающий момент на выходном валу, Нм

Номинальная радиальная сила, Н

выходной вал

Таблица 4. Технические параметры цилиндрических редукторов Ц2С (двухступенчатых соосных)

Номинальные передаточные отношения

Номинальный вращающий момент на выходном валу, Нм

Номинальная радиальная сила, Н

1.2.4 Конические редукторы

Конструкцией конического редуктора предусмотрены колеса с прямыми и круговыми зубьями. Направления наклона линии зуба и вращения колеса должны совпадать. Соблюдение этого условия позволяет предотвратить затягивание шестерни в зацепление, возникающее под действием отрицательной осевой силы на шестерне.

Передаточное отношение конического редуктора — 1-5.

Зубчатое колесо устанавливается между опорами редуктора. Шестерни монтируются консольно.

1.2.5 Коническо-цилиндрические редукторы

Данный тип механизмов представляет собой гибрид цилиндрического одноступенчатого и конического редукторов. Соответственно, этой группе оборудования присущи все достоинства и недостатки агрегатов обоих типов.

Все коническо-цилиндрические редукторы имеют быстроходную коническую ступень. Такая конструктивная особенность объясняется невысокой нагрузочной способностью и, соответственно, большими габаритами агрегата. С целью уменьшения размеров привода и используется быстроходная коническая ступень.

Коническая передача может использоваться в тихоходных и промежуточных ступенях, что оправдано необходимостью снижения ее чувствительности к погрешностям при производстве и установке, минимизацией их влияния на механизм в целом.

Направление зуба в косозубой цилиндрической паре должно быть выбрано с учетом возможности вычитания осевых сил на промежуточных валах.

Таблица 5. Коэффициент режима эксплуатации коническо-цилиндрических редукторов (двухступенчатых и трехступенчатых)

Характер режима нагрузки

Суточная продолжительность эксплуатации

1.2.6 Насадные редукторы

Насадными редукторами называются агрегаты с полым выходным валом. Они монтируются непосредственно на вал — без дополнительных соединений и передач. Преимущество насадных редукторов заключается в более компактных габаритах и сравнительно невысоком весе.

Насадный способ монтажа, как правило, применим к червячным и некоторым другим типам редукторов. Исключение составляет цилиндрическая соосная группа оборудования, конструктивные особенности которой затрудняют такую установку.

При резкой динамике нагрузки на выходной вал (чаще всего при нештатных ситуациях) отсутствие соединительной муфты может стать причиной преждевременного выхода из строя приводного оборудования. Поэтому эксплуатация редуктора требует создания условий эксплуатации при равномерной нагрузке. Как вариант – дополнительная защита привода.

1.2.7 Планетарные редукторы

Планетарные (дифференциальные) редукторы состоят из центральной шестерни (солнечной), расположенной в центре редуктора, вспомогательных шестерней одинакового размера (сателлитов), установленных вокруг центральной шестерни, и фиксатора (водила), обеспечивающего их надежное крепление. Конструкцией планетарного редуктора также предусмотрена кольцевая шестерня, внешне напоминающая зубчатое колесо. Ее предназначение – обеспечение сцепления с сателлитами. Центральная шестерня является ведущим элементов, сателлиты — ведомыми. Кольцевая шестерня всегда неподвижна.

Конструктивно исполнения планетарных редукторов могут отличаться. Модели классифицируются по количеству ступеней (одно-, двух- и трехступенчатые), кинематической схеме планетарной передачи. Тип подшипников также отличается. Подшипники качения предназначены для режимов эксплуатации на низкой скорости. В свою очередь, подшипники скольжения рассчитаны на режим высоких скоростей. Основная сфера использования планетарных редукторов — машиностроение.

Планетарные агрегаты МПО классифицируются как универсальное приводное оборудование. Они широко используются в приводах перемешивающих механизмов медицинской, химической, микробиологической промышленностях, а также в приводах общепромышленного назначения. Редукторы серии МПО могут эксплуатироваться в режиме 24 часа в сутки при постоянной и переменной нагрузках.

К планетарным редукторам предъявляются жесткие требования. Производство такого оборудования требует высокой точности, чтобы зубцы плотно соприкасались между собой, но при этом легко приводились в движение.

Таблица 6. Технические параметры планетарных редукторов Пз (зубчатые одноступенчатые)